

CENTRA

LIBRAR

15ME61

USN

15ME61

b. Consider the truss shown in Fig.Q4(b), X-Y coordinates of the two nodes are indicated in the figure. If $q = [1.5, 1.0, 2.1, 4.3]^T \times 10^{-2}$ mm. Take E = 300 GPa, A = 100 mm². Determine the following :

(i) Local coordinates (q') (ii) Stress in the element (iii) Stiffness matrix of the element.

(06 Marks)

<u>Module-3</u>

- 5 a. Derive Hermit shape function for a beam element.
 - b. For the beam and loading shown in Fig.Q5(b), determine the slopes at 2 and 3 and the vertical deflection at the midpoint of the distributed load. Take E = 200 GPa, $I = 4 \times 10^6$ mm⁴.

(10 Marks)

OR

- 6 a. Derive the stiffness matrix for a circular shaft subjected to pure torsion. (06 Marks)
 - b. A hallow circular shaft 2m long is firmly supported at each end and has an outside diameter 80mm and inside diameter 63.8mm. The shaft is subjected to a torque of 12 kN-m applied at a point 1.5m from one end. Calculate the maximum shear stress and angle of twist in the shaft. The shear modulus $G = 8 \times 10^4 \text{ N/mm}^2$. (10 Marks)

Module-4

7 a. Derive the element stiffness matrix for one dimensional heat conduction. (06 Marks)
b. A wall of 0.6m thickness having thermal conductivity of 12 W/mK. The wall is to be insulated with a material thickness of 0.06m having an average thermal conductivity of 0.3 W/mK. The inner surface temperature is 1000°C and the outside of the insulation is exposes to an atmospheric air at 30°C with heat transfer coefficient 35 W/m²K. Calculate the nodal temperatures. (10 Marks)

OR

8 a. Briefly explain one dimensional heat transfer in thin films. (04 Marks)
 b. Deduce the Governing differential equation for one dimensional fluid flow through a process medium. (06 Marks)
 c. Derive the stiffness matrix for one dimensional fluid element. (06 Marks)

Module-5

9 a. Derive the stiffness matrix of axisymmetric bodies with triangular elements. (08 Marks)

(06 Marks)

15ME61

b. Evaluate the Nodal forces used to replace the linearly varying surface traction shown in Fig.Q9(b).

Z 3 0-4 MPa 20mm Fig.Q9(b)

(08 Marks)

OR

10

a.

- Derive the consistent mass matrix for truss element. (06 Marks)
- b. For the stepped bar shown in Fig.Q10(b), determine the eigen values and eigen vector. Take $A_1 = 400 \text{ mm}^2$, $\rho = 7850 \text{ kg/m}^3$, E = 200 GPa, $A_2 = 200 \text{ mm}^2$. (10 Marks)

